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DC transport properties (e. g. , conductivity, Hall effect, magneto-

conductivity) are proportional to various averages of the electron-lattice

relaxation time ( ( T ~ , (T2~ , {T’} , etc.) and hence give
indirect information about the scattering mechanisms affecting the con-

duction process. With microwaves, the observation frequency can

frequently be of the ord$r of the scattering frequency 1 /(2Tr ( T ) ) . ~

Uncle r these conditions, microwave transport properties are complex

and contain potentially more information conce ming detailed s catte ring

mechanisms than the analogous dc properties .

Because of the relatively large conductivity of semiconductors and

also because of practical geometrical considerations, microwave trans-

port experiments are generally not well suited to exact analysis. This

paper discusses perturbation techniques which are useful in determining

transport properties of a bulk semiconductor contained in a waveguide

from measurements of the properties of the transmitted wave.

A. High Frequency Transport Phenomena

The conductivity of an isotropic semiconductor that is uniformly

magnetized in the z-direction is a tensor of the form
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to the first order in B . A microwave transport experiment measures

“fthe relative permittivl y tensor

7a &-
E

‘1 +
r- jws

0

(2)

*Work supported by the AF Office of Scientific Research of the

Office of Aerospace Research under Contract No. AF 49(638)-747.

+
For example, the frequency of acoustical mode phonon scattering

for both n-type silicon and p-type germanium is about 22 Gc/s at 77° K.

99



A
where

‘Q
is a diagonal tensor describing the lattice contribution.

For a simple spherical band semiconductor, the conductivity and

Hall terms, <x and <y, are given by

and

{(
2
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T

)/( ))

2
T

(1 + j07)2

(3)

“t’rand‘P the dc conductivity and dc Hall mobility, respectively.

Normalized p ots of ~ and ~ for a very simple scattering model are

shown in Figures 1 anx$2. M~#e sophisticated rm dels lead to different

shaped curves; however , all models are characterized by having a large

imaginary contribution in the vicinity of O(T) = 1. DC experiments
mess ure only the asymptotic values of these curves.
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Fig. 1. Frequency dependence of normalized complex conductivity for spherical

band semiconductor. Relaxation time is assumed independent of electron energy.

B. The Perturbation Method

Figure 3 shows TE waves propagating through a waveguide containing

a semiconductor of arbitrary (but uniform) cross section. If mode solu-

tions in the two regions are sufficiently alike, higher order terms can be

neglected and the transmission coefficient of the principal mode written 2
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Fig. 2, Frequency dependence of normalized complex Hal! term for same model.
Note region of negative real part,
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Fig. 3. Waveguide perturbed with semiconductor of uniform cross section
between Z = O and Z = d.

-(A + j+) =
411 yz

e

(YI + V2)2 .eyzd - (Y2 - Y1)2 ~-yzd
(4)

where y = a2 + j~2 and yl = j~l are the propagation constants in the per-
turbed a%d unperturbed regions, respectively.

In an experiment in which a perturbed section is substituted for an

unperturbed section, the logarithmic magnitude and phase of the
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transmitted wave will change by the amounts A and {~ - ~ld}, respectively.

One can then employ a digital computer inversion of (4) to obtain y2d and

~2d from the measured A and C$and the calculated value of (31d.

If the field distributions of a perturbed mode E7 (x, y), :2 (x, y), and

the corresponding unperturbed mode I?l (x, y), El (~, y) are known, the

diffe~nce between their propagation constants can be calculated exactly

from :

fic ~ (~1)- @ . ~; dS

(yz - yl)=
o

s

(5)

(~:x~z). ~dS+
s

(E2 X @ . < dS

by integrating over the cross section of the wave guide. Under the same

conditions that (4) applies, perturbed fields are known approximately and

(5) can be evaluated to yield the components of ? explicitly in terms

~ and ~l. This calculation assumes nothi~g about the relative
‘f a2 .’ $
magnltu es of conduction and displacement currents and applies to both

high and low conductivity mate rials.

c. Zero Magnetic Field--Measurement of Complex Conductivity—

When Bz = O, the relative permittivity is scalar

.
&=: = E’ - jc”
r r r r

(6)

with c’=~ and s I( = 0-’/0.):
1

at frequencies much less than the scatter-
r

ing fr~quency.
o 0

If the sample completely fills the wave guide, perturbed and unper-

turbed normal modes are identical so that (4) is exact. Equation (5) can

also be evaluated exactly. The result is:

(7)

show ing that knowledge of both a and ~z is required in general to find
—2

eithers ‘ or c!’.
—r r

As an example of an approximate solution, consider a thin sample in

‘he center ‘f a ‘Elo
mode waveguide (Figure 4). One can show for this

case that the unperturbed fields are a first ord4er approximation to the

perturbed fields under the following condition :
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Fig. 4. Thin semiconductor placed vertically in center of rectangular TEIO
mode waveguide.
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When these inequalities are satisfied, (4) applies and (5) can again be
evaluated to yield

{E~-’}’[%}{mJpc }{~:-a;-~:}
00

‘; ={%} {w:, E } [“,1} .
00

(9)

D. Gyromagnetic Semiconductor -- Measurem ent of Complex Hall Effect
— .—

An isotropic semiconductor that is magnetized in the z-direction has

a tensor relative permittivity

(sr’ - jsr’r ) - j(n’ - h“) o

u
c

r j(n’ - h“) (Sr’ - jsr”) o

0 0 (sr’ - jsr”)

(lo)
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to the first order in the magnetic field. At low frequency, the four com-

ponents are

(11)
1! _~-o.

The off-diagonal terms, which are responsible for the dc Hall effect,5 ~

manifest themselves in the Faraday effect at microwave frequencies ‘ .

Perturbation theory will yield these terms as well as the diagonal terms.

Consider linearly polarized radiation incident upon the sample com-

pletely filling a section of degenerate (e. g. , circular) waveguide. One

can measure four properties of the elliptically polarized transmitted

wave:

A - the logarithmic amplitude

+ - the phase

x- the ellipticity (ratio of E to E on the
max min

waveguide axis )

@ - the polarization angle.

As long as:

(12)

the perturbed and unperturbed modes will be sufficiently alike that (4) will

apply to ~circularly polarized components of the transmitted wave.

Thus , a2d and ~2d can again be determined from measurements of A, ~,

and ~ld by a computer inversion of (4). Furthermore, the ellipticity per

unit length ~2 and rotation angle per unit length O that characterize an

infinite medium can be determined from the corr~sponding experimental

quantities X and e as follows:

(YY, ~ -

(

~~ e
~2d ‘ (aA ) 8+)

(13)

with the partial derivatives in (13 ) also calculated by the computer. We

have programmed a computer to find a2d and ~2.d and the four partial

derivatives of (13) to within O. 1 per cent when given measured values of

A, ~, and ~ld. The computation time averages about five seconds.
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Under the same conditions that (4) and (13) apply, (5) can be evaluat-

ed to determine the tensor components explicitly. The result is:

(14)

‘“‘& h- ‘d’
00

where K is a waveguide constant given by 8/r2 for the square TE mode

and O. 838 for the circular TE The assumption of (12) li~its the

1 ~~~,~~iekl behavior as the cyclotronmagnetic field and excludes suc

resonance effect.

At frequencies much less than the scattering frequency, the four

measurements are not independent because q“ . 0. This leads to two

equations for the dc Hall mobility.

and

1
e

}

{+ +%} [< “_—
‘Ho - K Bz

Thus, the self-consistency of the ~asurements for @ <T)<< 1 can be

used as an experimental check.

(15)
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